If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-17x-23=0
a = 4; b = -17; c = -23;
Δ = b2-4ac
Δ = -172-4·4·(-23)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3\sqrt{73}}{2*4}=\frac{17-3\sqrt{73}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3\sqrt{73}}{2*4}=\frac{17+3\sqrt{73}}{8} $
| 6(-1/2x+9)=87 | | 43=3u | | -5(9-2x)=-115 | | 28,000m+3,000=36,000m+2,000 | | -3(-5x-3)=-51 | | (3x+23)=101 | | 624=y×6 | | 6(5-3x)=-42 | | v/11=5/8 | | (4z+11)=119 | | 3(2x-8)=-18 | | 1-x=4x-4 | | x^2+x+2018=0 | | 2b/18=4-4b | | 16v-7v=45 | | 50=18+z | | 1-x=5x+4 | | 1/3(3x*9)=60 | | -10+3g=-4 | | -5=-(p+4)+2(7+2p) | | −n+(−4)−(−4n)+6=5 | | 4t-2t-8=2t=5 | | 7=3x=5x+13 | | 6(-3r+4)-3(r+4)=75 | | 10x-20=29+3x | | 24+v=5v | | 4x+5x-3=180 | | 3w=63-6w | | 6x+(2x+50)=180 | | h+7=2+7 | | -22x=-5 | | B/9=4-4b |